{"pageProps":{"preview":false,"allUseCases":[{"node":{"title":[{"type":"heading3","text":"Automatic Ticket Resolution in Telecom","spans":[]}],"excerpt":[{"type":"heading5","text":"How Daisho’s text mining module automatically identified categories of issues from tickets and streamlined resolution","spans":[]}],"image":{"dimensions":{"width":680,"height":383},"alt":null,"copyright":null,"url":"https://images.prismic.io/daishohq/7a16f314-495f-42b8-b5e8-3a1f30185fab_provide-it-telecom-helpdesk-suport-software-testing-virtual-asistant-service.jpg?auto=compress,format"},"publish_date":"2020-07-24T18:30:00+0000","tags":[{"tag":"Ticket Categorization"},{"tag":"Text Mining"},{"tag":"Telecom"}],"_meta":{"uid":"automatic-ticket-resolution"}}},{"node":{"title":[{"type":"heading3","text":"Call Prioritisation in Healthcare Collections","spans":[]}],"excerpt":[{"type":"heading5","text":"How Daisho’s Machine-Learning Automation Platform Supercharged a Small Analytics Team","spans":[]}],"image":{"dimensions":{"width":225,"height":225},"alt":null,"copyright":null,"url":"https://images.prismic.io/daishohq/410d4f20-f1c5-4d9d-a695-a7bcf9c7cd50_image-1.png?auto=compress,format"},"publish_date":"2020-06-14T18:30:00+0000","tags":[{"tag":"Healthcare"},{"tag":"Collections"},{"tag":"Call Prioritization"}],"_meta":{"uid":"healthcare-collections"}}},{"node":{"title":[{"type":"heading3","text":"Predicting Network Performance","spans":[]}],"excerpt":[{"type":"heading6","text":"How Daisho's ML platform helped transform field services and network maintenance for a Telco by predicting network faults 5 hours in advance","spans":[]}],"image":{"dimensions":{"width":1200,"height":400},"alt":null,"copyright":null,"url":"https://images.prismic.io/daishohq/833fac66-bc2b-424c-8c3c-50311c47a302_telecom-tower-failure-2.jpg?auto=compress,format"},"publish_date":"2020-06-14T18:30:00+0000","tags":[{"tag":"Telecom"},{"tag":"Predictive Maintenance"}],"_meta":{"uid":"telecom-which-cell-tower-fails"}}},{"node":{"title":[{"type":"heading3","text":"What's Gotten Worse (or Better) due to Covid-19","spans":[]}],"excerpt":[{"type":"heading5","text":"How A Small Team of Analysts Quickly Responded to the Covid-19 Pandemic using Daisho’s Automated Uplift Recipes by building more than 40 models inside 3 days.","spans":[]}],"image":{"dimensions":{"width":2048,"height":1536},"alt":null,"copyright":null,"url":"https://images.prismic.io/slicemachine-blank/3109b42f-4f55-4de1-91fa-40c734f88e62_ice-cream.png?auto=compress,format"},"publish_date":"2020-06-07T18:30:00+0000","tags":[{"tag":"Healthcare"},{"tag":"Covid-19"},{"tag":"A/B"}],"_meta":{"uid":"covid-impact-healthcare"}}},{"node":{"title":[{"type":"heading3","text":"Early Warning Systems","spans":[]}],"excerpt":[{"type":"heading5","text":"How Daisho took a 600-page dashboard, and automatically extracted the most important information for business-users to act upon.","spans":[]}],"image":{"dimensions":{"width":299,"height":168},"alt":null,"copyright":null,"url":"https://images.prismic.io/daishohq/00a642c0-ad87-47e9-a9ae-23791c3c39ee_images.jpeg?auto=compress,format"},"publish_date":"2020-05-31T18:30:00+0000","tags":[{"tag":"CPG"},{"tag":"Early Warning System"},{"tag":"Outlier Detection"},{"tag":"Pattern Recognition"}],"_meta":{"uid":"early-warning-systems"}}},{"node":{"title":[{"type":"heading3","text":"Impact of Late Deliveries on Customer Churn","spans":[]}],"excerpt":[{"type":"heading5","text":"How Daisho’s Signal Factory connected supply chain metrics with customer churn to prioritise order deliveries","spans":[]}],"image":{"dimensions":{"width":1966,"height":1312},"alt":null,"copyright":null,"url":"https://images.prismic.io/daishohq/85c5049d-b32c-42da-a3cd-33422afeedb1_supply-chain-delivery.png?auto=compress,format"},"publish_date":"2020-04-30T18:30:00+0000","tags":[{"tag":"Supply Chain"},{"tag":"Customer Churn"},{"tag":"A/B"}],"_meta":{"uid":"late-delivery-customer-churn"}}}]},"__N_SSG":true}